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The consistent coupled-mode theory (Athanassoulis & Belibassakis, J. Fluid Mech. vol.
389, 1999, p. 275) is extended and applied to the hydroelastic analysis of large floating
bodies of shallow draught or ice sheets of small and uniform thickness, lying over
variable bathymetry regions. A parallel-contour bathymetry is assumed, characterized
by a continuous depth function of the form h(x, y) = h(x), attaining constant, but
possibly different, values in the semi-infinite regions x < a and x > b. We consider the
scattering problem of harmonic, obliquely incident, surface waves, under the combined
effects of variable bathymetry and a floating elastic plate, extending from x = a to
x = b and −∞ <y < ∞. Under the assumption of small-amplitude incident waves and
small plate deflections, the hydroelastic problem is formulated within the context
of linearized water-wave and thin-elastic-plate theory. The problem is reformulated
as a transition problem in a bounded domain, for which an equivalent, Luke-type
(unconstrained), variational principle is given. In order to consistently treat the wave
field beneath the elastic floating plate, down to the sloping bottom boundary, a
complete, local, hydroelastic-mode series expansion of the wave field is used, enhanced
by an appropriate sloping-bottom mode. The latter enables the consistent satisfaction
of the Neumann bottom-boundary condition on a general topography. By introducing
this expansion into the variational principle, an equivalent coupled-mode system of
horizontal equations in the plate region (a � x � b) is derived. Boundary conditions
are also provided by the variational principle, ensuring the complete matching of the
wave field at the vertical interfaces (x = a and x = b), and the requirements that the
edges of the plate are free of moment and shear force. Numerical results concerning
floating structures lying over flat, shoaling and corrugated seabeds are presented and
compared, and the effects of wave direction, bottom slope and bottom corrugations
on the hydroelastic response are presented and discussed. The present method can be
easily extended to the fully three-dimensional hydroelastic problem, including bodies
or structures characterized by variable thickness (draught), flexural rigidity and mass
distributions.

1. Introduction
The interaction of free-surface gravity waves with floating deformable bodies, in

water of intermediate depth with a general bathymetry, is a mathematically interesting
problem finding important applications. Very large floating structures (VLFS,
megafloats) and platforms of shallow draught are examples of structures for which
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hydroelastic effects are significant and should be properly taken into account. Such
structures have been intensively studied, being under consideration for use as floating
airports and mobile offshore bases. Extended surveys, including a literature review,
have been recently presented by Kashiwagi (2000) and Watanabe, Utsunomiya &
Wang (2004). Also, the hydroelastic analysis of floating bodies is relevant to problems
concerning the interaction of water waves with ice sheets; an extended review can be
found in Squire et al. (1995).

Although nonlinear effects are of specific importance, as e.g. in the study of signifi-
cant local slamming phenomena, see e.g. Faltinsen (2001), Greco, Landrini & Faltinsen
(2003), the solution of the linearized problem still provides valuable information,
serving also as the basis for the development of weakly nonlinear models. The line-
arised problem associated with the hydroelastic responses of VLFS can be effectively
treated in the frequency domain, and many methods have been developed for its
solution. These include the B-spline Galerkin method by Kashiwagi (1998), boundary
element methods (BEM) (Ertekin & Kim 1999; Hermans 2000; Hong, Choi & Hong
2001), hydroelastic eigenfunction expansion techniques (Kim & Ertekin 1998; Takagi,
Shimada & Ikebuchi 2000; Hong et al. 2003), integro-differential equations (Adrianov
& Hermans 2003), Wiener-Hopf techniques (Tkacheva 2001), Green–Naghdi models
(Kim & Ertekin 2002), and others. Another approach, originally developed by Eatock
Taylor & Waite (1978) and Bishop, Price & Wu (1986), and further extended by various
authors, as e.g. Newman (1994), Wu, Watanabe & Utsunomiya (1995), is based on ex-
pressing the structure oscillations in a series expansion (using either dry elastic modes
or another basis), identifying appropriate radiation problems and, finally, formulating
and solving the coupled hydrodynamic equations. Meylan (2001) derived a variational
equation for the plate–water system by expressing the water motion as an operator
equation. In addition to the above, high-frequency asymptotic methods have been
developed to describe the deflection dynamics of VLFS, see e.g. Ohkusu & Namba
(1996), Hermans (2003). The latter are especially useful in the case of short waves
interacting with a floating structure of large horizontal dimensions. Much information,
as well as progress on VLFS, can be found in special issues of J. Fluids Struct. (Eatock
Taylor & Ohkusu 2000) and Mar. Struct. (Ertekin et al. 2000, 2001), as well as in the
VLFS sections of ISOPE Conference Proceedings.

Similar techniques have been developed for the interaction of water waves with ice
sheets. For example, Marchenko & Shrira (1991), using Zakharov’s (1968) variational
principle, developed a Hamiltonian formalism for the waves in the liquid beneath an
ice sheet, and Meylan & Squire (1994) used Green’s function approach to formulate
an integral equation over a floating plate. In the case of water-wave interaction with
semi-infinite ice sheets, Balmforth & Craster (1999) used a Fourier transform approach
in conjunction with Wiener–Hopf techniques, Linton & Chung (2003) developed a
residue calculus technique, and Evans & Porter (2003) used eigenfunction expansion
methods to study wave scattering by narrow cracks in ice sheets. A more thorough
review concerning wave–ice interaction can be found in the above papers.

In most works dealing with the hydroelastic analysis of large floating bodies, the
water depth has been assumed to be constant, either finite or infinite. This assumption
cannot, in general, be justified in the case of (very) large floating bodies in nearshore
and/or coastal waters. In this case, the variations of bathymetry over the extent of the
floating body may be significant and might have important effects on the hydroelastic
behaviour of the system; experimental evidence of these effects has been recently
provided by Shiraishi, Iijuma & Yoneyama (2002). Numerical methods for predicting
the hydroelastic responses of VLFS in variable bathymetry regions have been recently
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Figure 1. Floating elastic plate in variable bathymetry region.

proposed, based on BEM in conjunction with fast multipole techniques (Utsunomiya,
Watanabe & Nishimura 2001), and on eigenfunction expansions in conjunction with
a step-like bottom approximation (Murai, Inoue & Nakamura 2003). In addition,
Porter & Porter (2004) have recently derived an approximate, vertically integrated,
two-equation model for the problem of water-wave interaction with an ice sheet of
variable thickness, lying over variable bathymetry, which is valid under mild-slope
assumptions both with respect to the wetted surface of the ice sheet and the bottom
boundary.

In the present work, a continuous coupled-mode technique is developed and applied
to the hydroelastic analysis of large floating bodies of shallow draught or ice sheets
of small and uniform thickness, lying over variable bathymetry regions. A parallel-
contour bathymetry is assumed, characterized by a continuous depth function of
the form h(x, y) = h(x), attaining constant, but possibly different, values in the semi-
infinite regions x < a and x >b; see figure 1. We consider the scattering problem of
harmonic, obliquely incident, surface waves, under the combined effects of variable
bathymetry and a floating elastic plate, extending from x = a to x = b and −∞ <y < ∞.
Under the assumption of small-amplitude incident waves and small plate deflections,
the hydroelastic problem is formulated within the context of linearised water-wave and
thin-elastic-plate theory. In contrast to the step-like bottom approximation, the present
approach does not introduce artificial discontinuities (bottom corners). In order to
consistently treat the wave field beneath the elastic floating plate, down to the sloping
bottom boundary, an appropriate extension of the consistent coupled-mode theory,
derived by Athanassoulis & Belibassakis (1999) and extended to three-dimensional by
Belibassakis, Athanassoulis & Gerostathis (2001), has been developed and exploited.
The present method is based on a complete, local, hydroelastic-mode series expansion
of the wave field, enhanced by an appropriate sloping-bottom mode, enabling the
consistent satisfaction of the Neumann bottom-boundary condition on a general
topography. By introducing this expansion into an appropriate Luke-type variational
principle (Luke 1967), an equivalent coupled-mode system of horizontal equations in
the plate region (a � x � b) is derived. Unlike other Hamiltonian variational principles
(see e.g. Marchenko & Shrira 1991; Nagata, Niizato & Isshiki 2002), constrained by
the below-the-surface kinematics, the present one is totally unconstrained. Boundary
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conditions are also provided by the variational principle, ensuring the complete match-
ing of the wave field at the vertical interfaces (x = a and x = b), and the requirements
that the edges of the plate are free of moment and shear force.

The plan of our paper is as follows. In § 2 the mathematical formulation of the
problem is presented in the usual differential form, and in § 3 the variational principle
is given. The enhanced, local, hydroelastic-mode representation is introduced in
§ 4. The latter, combined with the variational principle, leads to a coupled-mode
system of horizontal equations with respect to the mode amplitudes and the elastic
plate deflection, which is derived in § 5. A selection of numerical examples, including
comparisons with other methods, is presented and discussed in § 6. In order to illustrate
the effects of the bottom inhomogeneity, numerical results are presented concerning
the deflection of large floating bodies lying over a flat bottom, a shoal and a corru-
gated seabed. With the aid of systematic comparisons, the effects of bottom slope and
bottom corrugations on the hydroelastic response of large floating elastic plates are
examined and discussed.

Future extensions and generalizations of the present method are directed towards:
(i) the modelling of floating bodies with variable thickness, elastic parameters and
mass distribution, also enabling application to the problem of wave interaction with
ice sheets of general morphology, as e.g. described by Porter & Porter (2004); (ii) the
solution of the fully three-dimensional problem over a general seafloor; and (iii) the
modelling and analysis of the weakly nonlinear hydroelastic problem.

2. Differential formulation of the problem
The environment studied consists of a water layer D3D bounded above partly by

the free surface and partly by a large floating plate (large shallow-draught platform
or ice sheet of uniform and small thickness), and below by a rigid bottom. It is
assumed that the bottom surface exhibits an arbitrary one-dimensional variation in
a subdomain of finite length, i.e. the bathymetry is characterized by straight and
parallel bottom contours lying between two regions of constant but possibly different
depth: h = h1(region of incidence) and h =h3 (region of transmission); see figure 1.
The slopes of both the liquid free surface η̃(x, y; t) and the elastic-plate deflection
w̃(x, y; t) are assumed to be small enough that the standard linearised equations can
be applied (see e.g. Stoker 1957 or Wehausen & Laitone 1960).

A Cartesian coordinate system is introduced, with its origin at some point on the
mean elastic-plate surface (in the variable bathymetry region), the z-axis pointing
upwards and the y-axis parallel to the bottom contours. The mean liquid domain
is D3D = D × R, where D is the (two-dimensional) intersection of D3D by a vertical
plane perpendicular to the bottom contours, i.e. D = {(x, z) : x ∈ R, −h(x) < z < 0},
and R = (−∞, +∞). The function h(x), appearing in the above definitions, represents
the local depth, measured from the mean water level. It is considered to be a smooth
function of class C2 defined on the real axis R, such that h(x) = h(a) = h1, for all
x � a, h(x) = h(b) = h3, for all x � b.

The domain D is decomposed in three subdomains D(i), i = 1, 2, 3, defined as
follows: D(1) is the constant-depth subdomain characterized by x < a and constant
depth h1; D(3) is the constant-depth subdomain characterized by x >b and constant
depth h3; and D(2) is the variable bathymetry subdomain, lying between D(1) and
D(3), which also contains the floating elastic plate. The above decomposition is
also applied to the free-surface/elastic-plate surface and bottom surface boundaries.
Finally, we define the vertical interfaces separating the three subdomains, which are
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vertical segments (between the bottom and the mean water level) at x = a and x = b,
respectively, shown by dashed lines in figure 1.

We consider the scattering problem of harmonic, obliquely incident, surface (gravity)
plane waves of angular frequency ω, under the combined effects of variable bathymetry
and a semi-infinite (along the y-direction) thin floating elastic plate extending from
x = a to x = b. The waves propagate with directions θ1 and θ3 with respect to the
x-axis in the regions of incidence (x � a) and transmission (x � b), respectively. Under
the usual assumptions of linearised water-wave theory and thin-elastic-plate theory,
the problem can be treated by partial separation of variables with respect to the
transverse y-coordinate. The wave potential can be expressed in the form

Φ̃(x, y, z; t) = Re

(
− igH

2ω
ϕ(x, z) exp(i(qy − ωt))

)
, (2.1a)

where H is the incident wave height, g is the acceleration due to gravity, and i =
√

−1.
(The constant q is related with the y-periodicity of the fields and will be defined
later.) The liquid free-surface elevation is expressed in terms of the wave potential by
using the linearised Bernoulli’s equation on the free surface,

η̃(x, y; t) = −1

g

∂Φ̃(x, y, z = 0; t)

∂t
= Re

(
H

2
ϕ(x, z = 0) exp(i(qy − ωt))

)
. (2.1b)

The elastic-plate deflection is connected to the wave potential by means of the
linearised kinematical condition at the liquid–solid interface,

∂w̃(x, y; t)

∂t
=

∂Φ̃(x, y, z = 0; t)

∂z
,

which reduces to

w̃(x, y; t) = Re(w(x) exp(i(qy − ωt))), where w(x) =
i

ω

∂ϕ(x, z = 0)

∂z
, (2.1c)

in the frequency domain. The constant

q = κ
(1)
0 sin θ1 (2.2)

denotes the periodicity constant along the y-direction, which is determined by the
wave number κ

(1)
0 = 2π/λ1 of the incident wave and its direction of propagation θ1

in the region D(1), far from the elastic plate and the bottom irregularity (x → −∞).
The direction of the transmitted wave in the region D(3)(x → ∞) is given by (see also
Massel 1993),

θ3 = sin−1
(
κ

(1)
0 sin θ1/κ

(3)
0

)
, (2.3)

where κ
(3)
0 = 2π/λ3 is the wavenumber of the transmitted wave. Energy conservation

leads to the equation (Wehausen & Laitone 1960, § 17; Massel 1993):

c(1)
g (1 − |AR|2) cos θ1 = c(3)

g |AT |2 cos θ3, (2.4)

where AR is the reflection coefficient and AT is the transmission coefficient (defined
as the ratios of the corresponding wave amplitudes to the incident wave amplitude),
and

c(j )
g =

ω

2κ
(j )
0

(
1 +

2κ
(j )
0 hj

sinh
(
2κ

(j )
0 hj

)
)

, j = 1, 3, (2.5)
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are the group velocities in the left (D(1)) and right (D(3)) half-strips. Equation (2.4)
imposes a constraint between the wave parameters at infinity and can be used for
checking the accuracy of any numerical solution. The problem of water-wave scatter-
ing by the elastic plate, with the effects of variable bathymetry, can be formulated
as a transmission problem in the bounded subdomain D(2) = {(x, z) : −h(x) < z < 0,

a < x <b} with the aid of the following general representations of the complex wave
potential ϕ(x, z) in the two semi-infinite strips D(1) = {(x, z) : −h1 < z < 0, −∞ <x <a}
and D(3) = {(x, z) : −h3 < z < 0, b < x < ∞} (see e.g. Kirby & Dalrymple 1983; Massel
1993):

ϕ(1)(x, z) =
(
exp

(
ik(1)

0 x
)

+ AR exp
(
−ik(1)

0 x
))

Z
(1)
0 (z)

+

∞∑
n=1

C(1)
n Z(1)

n (z) exp
(
k(1)

n (x − a)
)

in D(1), (2.6a)

ϕ(3)(x, z) = AT exp
(
ik(3)

0 x
)
Z

(3)
0 (z) +

∞∑
n=1

C(3)
n Z(3)

n (z) exp
(
k(3)

n (b − x)
)

in D(3). (2.6b)

In the series (2.6a, b), the terms(
exp

(
ik

(1)
0 x

)
+ AR exp

(
−ik(1)

0 x
))

Z
(1)
0 (z) and AT exp

(
ik(3)

0 x
)
Z

(3)
0 (z)

are the propagating modes, while the remaining ones (n= 1, 2, . . .) are the evanescent
modes. In the above expansions, the quantities

k
(j )
0 =

√(
κ

(j )
0

)2 − q2, k(j )
n =

√(
κ

(j )
n

)2
+ q2, n = 1, 2, 3, . . . , j = 1, 3, (2.7a)

are horizontal wavenumbers, which are defined in terms of the eigenvalues {iκ (j )
0 , κ (j )

n ,

n=1, 2, . . .} of the associated vertical Sturm–Liouville problems, obtained as the roots
of the dispersion relations

µhj = −κ (j ) hj tan
(
κ (j )hj

)
, µ = ω2/g, j = 1, 3. (2.7b)

Finally, the functions {Z(j )
n (z), n = 0, 1, 2, . . .}, appearing in (2.6a, b), denote the

corresponding eigenfunctions, and are given by

Z
(j )
0 (z) =

cosh
(
κ

(j )
0 (z + hj )

)
cosh

(
κ

(j )
0 hj

) , Z(j )
n (z) =

cos
(
κ (j )

n

(
z + hj

))
cos

(
κ

(j )
n hj

) ,

n = 1, 2, . . . , j = 1, 3. (2.8)

Using the representations (2.6a, b), for the wave potential in the two half-strips D(1)

and D(3), in conjunction with the linearised water-wave equations in D(2), and the
standard thin-plate theory (see e.g. Magrab 1979), the hydroelastic problem examined
is reformulated as follows:

Find the fields w(x), a � x � b, and ϕ(2)(x, z) = ϕ(x, z), in the bounded subdomain
D(2) = {(x, z) : −h(x) < z < 0, a <x <b}, satisfying the following differential equations,
boundary and matching conditions:

(∇2 − q2)ϕ(2) = 0 in −h(x) < z < 0, a < x < b, (2.9a)

D

((
∂2

∂x2
− q2

)2

w

)
+ (1 − ε)w − iµ

ω
ϕ(2) = 0 on z = 0, a < x < b, (2.9b)

w =
i

ω

∂ϕ(2)

∂z
on z = 0, a < x < b, (2.9c)



Hydroelastic analysis of floating bodies over variable bathymetry 227

∂ϕ(2)

∂z
+

dh

dx

∂ϕ(2)

∂z
= 0 on z = −h(x), a < x < b, (2.9d)

ϕ(2) = ϕ(1),
∂ϕ(2)

∂x
=

∂ϕ(1)

∂x
on x = a, −h1 < z < 0, (2.9e)

ϕ(2) = ϕ(3),
∂ϕ(2)

∂x
=

∂ϕ(3)

∂x
on x = b, −h3 < z < 0, (2.9f)

∂3w

∂x3
− (2 − ν)q2 ∂w

∂x
= 0 at x = a, z = 0 and at x = b, z = 0, (2.9g)

∂2w

∂x2
− νq2w = 0 at x = a, z = 0 and at x = b, z = 0. (2.9h)

Equation (2.9a) is the modified Helmholtz equation on the x, z vertical plane, which
reduces to the Laplace equation in the case of normal incidence θ1 = 0; cf. (2.2). The
boundary condition (2.9b) describes the coupled dynamics of the thin elastic plate
(modelling the floating structure) and the underlying fluid flow; see e.g. Meylan &
Squire (1994) or Andrianov & Hermans (2003). It is obtained by combining the thin-
elastic-plate equation with the linearised Bernoulli’s equation on the mean elastic plate
surface (z = 0), and involves the (constant) parameters D = D̂/ρg and ε = mω2/ρg,
where D̂ = Et3/12(1 − ν2) denotes the flexural rigidity of the elastic plate (the equiva-
lent flexural rigidity of the platform), and m is the mass per unit area of the plate.
Moreover, ρ denotes the fluid density and µ =ω2/g is the frequency parameter.
Equations (2.9c, d) are the kinematic conditions on the liquid–solid interface and
the seabed, respectively. Equations (2.9e, f ) are matching conditions on the vertical
interfaces at x = a and x = b, separating the three subdomains. Finally, the edge
conditions (2.9g, h) state that the ends (x = a and x = b) of the plate are free of shear
force and moment, where ν denotes Poisson’s ratio.

3. Variational formulation
The problem (2.9a–h) admits an unconstrained variational formulation, which will

serve as the basis for the derivation of an equivalent coupled-mode system of equations
on the horizontal plane. We consider the functional:

F
(
ϕ(2)(x, z), w(x), AR,

{
C(1)

n

}
n∈N

, AT ,
{
C(3)

n

}
n∈N

)
=

µ

2

∫ x=b

x=a

∫ z=0

z=−h(x)

((
∇ϕ(2)

)2
+

(
qϕ(2)

)2)
dz dx + iωµ

∫ x=b

x=a

ϕ(2)w dx

− ω2D

2

∫ x=b

x=a

((
∂2w

∂x2

)2

+ 2q2

(
∂w

∂x

)2

+

(
q4 +

1 − ε

D

)
w2

)
dx + νω2Dq2

[
w

∂w

∂x

]x=b

x=a

+ µ

∫ z=0

z=−h1

(
ϕ(2) − 1

2
ϕ(1)

(
AR,

{
C(1)

n

}
n∈N

))∂ϕ(1)
(
AR,

{
C(1)

n

}
n∈N

)
∂x

dz

− µ

∫ z=0

z=−h3

(
ϕ(2) − 1

2
ϕ(3)

(
AT ,

{
C(3)

n

}
n∈N

))∂ϕ(3)
(
AT ,

{
C(3)

n

}
n∈N

)
∂x

dz − µA0ARJ (1),

(3.1)

where

J (1) = 2k
(1)
0

∫ z=0

z=−h1

(
Z

(1)
0 (z)

)2
dz.
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The arguments of the functional F , which express the degrees of freedom of the
coupled hydroelastic system are: the wave potential ϕ(2)(x, z), (x, z) ∈ D(2), the elastic-
plate deflection w(x), a � x � b, and the coefficients AR, {C(1)

n }n∈N and AT , {C(3)
n }n∈N ,

which enter the principle through the representations (2.6a, b) of the half-strip wave
potentials ϕ(1) and ϕ(3). The coefficients AR, {C(1)

n }n∈N and AT , {C(3)
n }n∈N control the

liquid dynamics in the two half-strips, ensuring full dynamical coupling between the
three regions D(j ), j = 1, 2, 3. As shown in the Appendix, the variational equation
based on the part of the above functional that consists of the first, second, third and
fifth terms under the integral on the mean plate surface (third term on the right-hand
side of (3.1)) and of the end terms (fourth term on the right-hand side of (3.1)) is
equivalent to the variational equation based on the standard energy functional of the
thin-plate theory, that is defined as the difference between the strain energy of the
plate and the kinetic energy of the plate; see e.g. Magrab (1979, equation 6.20).

In terms of functional (3.1), the hydroelastic problem (2.9a–h) is reformulated as a
variational problem of the form

δF
(
ϕ(2), w, AR,

{
C(1)

n

}
, AT ,

{
C(3)

n

})
= 0. (3.2)

To establish the above variational principle, we have to calculate the first variation
δF of the functional (3.1); see e.g. Mei (1983, § 4.11). Making use of Green’s theorem
and the properties of the modal representations (2.6a, b) in the semi-infinite strips
D(1), D(3), and applying appropriate integration by parts to the term containing the
integral on the plate surface (third term on the right-hand side of (3.1)), the above
variational equation, finally, takes the form:

µ

∫ x=b

x=a

∫ z=0

z=−h(x)

(∇2 − q2)ϕ(2)δϕ(2) dz dx + µ

∫ x=b

x=a

(
∂ϕ(2)

∂z
+

dh

dx

∂ϕ(2)

∂x

)
δϕ(2)

∣∣∣∣
z=−h(x)

dx

− µ

∫ x=b

x=a

(
iωw +

∂ϕ(2)

∂z

)
δϕ(2)

∣∣∣∣
z=0

dx + ω2

∫ x=b

x=a

(
D

(
∂2

∂x2
− q2

)2

w + (1 − ε)w

− iµ

ω
ϕ(2)

∣∣∣∣
z=0

)
δw dx + µ

∫ z=0

z=−h1

(
∂ϕ(2)

∂x
− ∂ϕ(1)

∂x

)
δϕ(2)

∣∣∣∣
x=a

dz

− µ

∫ z=0

z=−h1

(
ϕ(2) − ϕ(1)

)
δ

(
∂ϕ(1)

∂x

)∣∣∣∣
x=a

dz − µ

∫ z=0

z=−h3

(
∂ϕ(2)

∂x
− ∂ϕ(3)

∂x

)
δϕ(2)

∣∣∣∣
x=b

dz

+ µ

∫ z=0

z=−h3

(
ϕ(2) − ϕ(3)

)
δ

(
∂ϕ(3)

∂x

)∣∣∣∣
x=b

dz − ω2D

[(
∂3w

∂x3
− (2 − ν)q2 ∂w

∂x

)
δw

]x=b

x=a

+ ω2D

[(
∂2w

∂x2
− νq2w

)
δ

(
∂w

∂x

)]x=b

x=a

= 0. (3.3)

The proof of the equivalence of the variational equation (3.3) and the hydroelastic
problem (2.9a–h) is obtained by using standard arguments of the Calculus of Vari-
ations. The independent variations in (3.3) are: (i) δϕ(2) in D(2), (ii) δϕ(2) on the bottom
surface z = −h(x), (iii) δϕ(2) on the mean plate surface z = 0, (iv) δϕ(2) on the vertical
interfaces at x = a and x = b, (v) δAR, {δC(1)

n }n∈N, δAT , {δC(3)
n }n∈N entering through the

variations δ(∂ϕ(j )/∂x), j = 1, 3, at x = a and x = b, respectively, (vi) δw in a <x <b,
(vii) δw at the end points x = a and x = b, and (viii) δ(∂w/∂x) at x = a and x = b.

The variational principle (3.3) is totally unconstrained, in the sense that all equations
(2.9a–h) are obtained as natural conditions, the only requirements imposed on the
admissible function spaces being some plausible smoothness assumptions concerning
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ϕ(2)(x, z) in D(2) and w(x) in a � x � b. (This turns to be a non-trivial requirement on
the non-horizontal part of the seabed, as we shall see in the next section.)

4. Enhanced local hydroelastic-mode series expansion
The problem of determining ϕ(2)(x, z) in D(2), satisfying the variational principle

(3.3), will be treated by an appropriate extension of the consistent coupled-mode
theory developed by Athanassoulis & Belibassakis (1999), for water-wave propagation
in variable bathymetry regions. We first review the vertical eigenfunction expansion
of the solution to the hydroelastic problem (2.9a–h) in the constant-depth case,
h(x) = h = const. As shown by various authors (e.g. Kim & Ertekin 1998; Takagi et al.
2000; Hong et al. 2003), in this case, separation of variables is possible, leading to an
expansion of the form

ϕ(2)(x, z) =

∞∑
n=0

ϕn(x)Zn(z), −h < z < 0, a < x < b. (4.1)

In the above equation, the term ϕ0(x)Z0(z) corresponds to the propagating mode,
the terms ϕn(x)Zn(z), n = 1, 2, correspond to the decaying-propagating modes, and
the remaining terms ϕn(x)Zn(z), n = 3, 4, . . . , express the evanescent modes, which are
especially important in the vicinity of the two edges x = a and x = b. The functions
Zn(z), n � 0, appearing in (4.1), are obtained as the eigenfunctions of the following
vertical Steklov-type eigenvalue problem:

d2Zn(z)

dz2
− κ2

nZn(z) = 0 in the interval − h < z < 0, (4.2a)

dZn(z = −h)

dz
= 0 at the bottom z = −h, (4.2b)

(
Dκ4

n − ε + 1
)dZn(z = 0)

dz
− µZn(z = 0) = 0 at the interface z = 0. (4.2c)

The solution of the above problem is given by

Zn(z) =
cosh[κn(z + h)]

cosh(κnh)
, n = 0, 1, 2, 3, . . . , (4.3a)

where the eigenvalues {κn, n = 0, 1, 2 . . .} are obtained as the roots of the dispersion
relation

µ = (Dκ4 + 1 − ε) κ tanh (κh), (4.3b)

which are distributed on the complex plane as shown in figure 2. Only the symmetric
subset of the roots of (4.3b), shown in figure 2 by open circles, is needed in the
expansion (4.1).

The indexing of the roots of (4.3b) is as follows: κ0 is the real-positive root, κ1 is
the root inside the first quadrant of the complex plane (i.e. Re(κ1) > 0, Im(κ1) > 0), κ2

is the conjugate-symmetric of κ1 (thus, κ2 = −Re(κ1) + i Im(κ1)), and κn, n =3, 4, 5, . . .

are the roots lying on the positive-imaginary axis (Im(κn) > 0). The wave potential
ϕ(2)(x, z), as defined through (4.1), identically satisfies the flat bottom boundary
condition ∂ϕ(2)(x, z = −h)/∂z = 0, since each term in the expansion does. Moreover,
the modal amplitudes ϕn(x), n = 0, 1, 2, . . . , should satisfy the uncoupled horizontal
equations

ϕ′′
m(x) +

(
κ2

m − q2
)
ϕm(x) = 0, m = 0, 1, 2, 3, . . . , (4.4)
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Figure 2. Distribution of the roots of (4.3b) on the complex κ-plane.

derived by separation of variables from the modified Helmholz equation (or the
Laplace equation, for q = 0). Combining (4.4) with (4.2a–c) and the dispersion relation
(4.3b), and using (2.9c) to eliminate w(x), we easily see that each term of the expansion
(4.1) also satisfies the liquid–plate interface condition (2.9b). Recapitulating, we can
make the statement that, in constant depth, the eigenfunction expansion (4.1) satisfies
all three equations (2.9a), (2.9b) and (2.9d), with the proviso that ϕn(x), n = 0, 1, 2, . . . ,

satisfy (4.4). The completeness of the expansion (4.1), in the space of functions
satisfying the same conditions as the set of eigenfunctions {Zn(z), n = 0, 1, 2 . . .}, both
at the flat bottom, (4.2b), and at the fluid–solid interface, (4.2c), has been recently
demonstrated by Evans & Porter (2003, § 4).

We shall now proceed to generalize the eigenfunction expansion (4.1) to the variable
bathymetry case. This will be done along the lines of the works by Athanassoulis &
Belibassakis (1999), Belibassakis et al. (2001), Athanassoulis & Belibassakis (2002).
When the bottom surface is varying (h′(x) �= 0), the vertical eigenfunction problem
(4.2a–c) becomes parametrically dependent on x, since the bottom boundary condition
is now applied to z = −h(x). The completeness property of the system {Zn(z; x),
n=0, 1, 2 . . .} suggests a first generalization of (4.1) in the form

ϕ(2)(x, z) =

∞∑
n=0

ϕn(x)Zn(z; x), −h(x) < z < 0, a < x < b, (4.5a)

where

Zn(z; x) =
cosh[κn(x)(z + h(x))]

cosh(κn(x)h(x))
, n = 0, 1, 2, 3, . . . , (4.5b)

and the x-dependent eigenvalues {κn(x), n = 0, 1, 2 . . .} are obtained as the roots of
the (local) dispersion relation

µ = (Dκ4(x) + 1 − ε)κ(x) tanh(κ(x)h(x)), a < x < b. (4.5c)
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The functions Zn(z; x), n = 0, 1, 2 . . . , are formally obtained as the eigenfunctions
of the local vertical eigenvalue problem of the form (4.2a–c), formulated at the local
depth h(x), for each x in the interval a � x � b.

There is, however, an apparent incompatibility between the expansion
∑∞

n=0 ϕn(x) ·
Zn(z; x), all terms of which satisfy the condition ∂Zn(z = −h(x); x)/∂z =0, for all
x in the interval a � x � b, and the field sought ϕ(2)(x, z), which must satisfy
∂ϕ(2)(x, z = −h(x))/∂z �= 0, at those x in a � x � b where the seabed is non-horizontal
(h′(x) �= 0). This fact has also the consequence that the series (4.5a) converges poorly
in variable bathymetry regions.

The key idea to overcome this incompatibility, which has been analysed by the pre-
sent authors in a series of papers mentioned above, is to subtract from the field sought
ϕ(2)(x, z) an appropriate function ϕ−1(x, z), so that the difference f (x, z) = ϕ(2)(x, z) −
ϕ−1(x, z) satisfies the same condition at the sloping bottom, ∂f (x, z = −h(x))/∂z = 0,
as the system {Zn(z; x), n = 0, 1, 2 . . .} does. The latter field f (x, z) is then expanded in
terms of the local eigenfunctions Zn(z; x), n = 0, 1, 2 . . . , providing us with a consistent
representation of the form

f (x, z) = ϕ(2)(x, z) − ϕ−1(x, z) =

∞∑
n=0

ϕn(x)Zn(z; x).

The additional term ϕ−1(x, z) is also represented in the form ϕ−1(x, z) =
ϕ−1(x)Z−1(z; x), where Z−1(z; x) is an appropriate vertical profile (explained below)
and ϕ−1(x) is an additional mode-amplitude, which will be called the sloping-bottom
mode, accounting for the satisfaction of the bottom boundary condition on the sloping
parts of the bottom. Thus, the following enhanced local-mode representation is derived

ϕ(2)(x, z) = ϕ−1(x)Z−1(z; x) +

∞∑
n=0

ϕn(x)Zn(z; x), −h(x) < z < 0, a < x < b. (4.6)

In contrast to the set of functions Zn(z; x), n= 0, 1, 2, 3 . . . , which all satisfy
∂Zn(z = −h(x); x)/∂z =0 on the bottom z = −h(x), the term Z−1(z; x) is taken to be a
smooth z-function satisfying the following inhomogeneous condition on the seabed:

∂Z−1(z = −h(x); x)

∂z
= 1. (4.7a)

Equation (4.7a), in conjunction with representation (4.6) after a termwise z-
differentiation, leads to the following interpretation of the amplitude of the sloping-
bottom mode:

ϕ−1(x) =
∂ϕ(2)(x, z = −h(x))

∂z
. (4.7b)

A consequence of (4.7b) is that the sloping-bottom term ϕ−1(x) Z−1(z; x) identically
vanishes on the horizontal parts (h′(x) = 0) of the bottom.

To derive a condition for Z−1(z; x) on the fluid–solid interface (z = 0), we consider
the corresponding boundary condition (2.9b) on z = 0, expressed in terms of the wave
potential ϕ(2)(x, z) (using (2.9c) to eliminate w):

D

((
∂2

∂x2
− q2

)2
∂ ϕ(2)

∂z

)
+ (1 − ε)

∂ϕ(2)

∂z
− µϕ(2) = 0 on z = 0, a < x < b.
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Using (2.9a) at z = 0 to replace the horizontal derivatives of ϕ(2)(x, z) by the cor-
responding vertical derivatives in the above equation, we find that

D
∂5ϕ(2)

∂z5
+ (1 − ε)

∂ϕ(2)

∂z
− µϕ(2) = 0 on z = 0, a < x < b (4.8a)

that is the same condition as the one satisfied by each Zn(z; x), n = 0, 1, 2 . . . , at z = 0
(cf. (4.5c)). Thus, the extra sloping-bottom mode ϕ−1(x)Z−1(z; x) should also satisfy
(4.8a), resulting in

D
∂5Z−1

∂z5
+ (1 − ε)

∂Z−1

∂z
− µZ−1 = 0 at z = 0 and for a < x < b. (4.8b)

The last requirement makes the sloping-bottom mode ϕ−1(x)Z−1(z; x) compatible
with the rest of the modes on z = 0. Thus, the representation (4.6) is compatible with
both the bottom boundary condition (2.9d), as well as with the fluid–solid interface
boundary condition (2.9b), with the proviso that the modified Helmholtz (or Laplace)
equation is satisfied. A specific convenient form of Z−1(z; x) is given by

Z−1(z; x) = h(x)

[(
z

h(x)

)3

+

(
z

h(x)

)2]
, (4.9)

and all results presented in this work are based on the above choice, although other
choices are also possible. However, extensive numerical experimentation with other
possible choices has proven that the final solution concerning the wave potential, as
obtained by the enhanced representation (4.6), always remains the same for all valid
forms of Z−1(z; x).

More details about the role and significance of the sloping-bottom mode can
be found in Athanassoulis & Belibassakis (1999, § 4), where this concept was
first introduced for developing a consistent coupled-mode system for water-wave
propagation over variable bathymetry regions, which is not restricted by any mild-
slope assumption concerning the bottom profile.

5. The coupled-mode system of equations
By introducing the series representations (2.6a), (4.6) and (2.6b) for the potentials

ϕ(j )(x, z), j = 1, 2, 3, in the variational principle (3.3), and expressing all variations in
terms of δϕn(x), n = −1, 0, 1, 2, . . . , and δAR, {δC(1)

n }n∈N, δAT , {δC(3)
n }n∈N, it is possible

to obtain a coupled-mode system (CMS) of horizontal differential equations for ϕn(x)
and w(x), along with the appropriate boundary conditions at the end points x = a

and x = b. The derivation can be made by following exactly the same procedure as in
Athanassoulis & Belibassakis (1999).

5.1. The CMS in the case of variable bathymetry

The first three terms on the left-hand side of variational equation (3.3) (that is the
integrals over D(2), the seabed z = −h(x) and the liquid-plate interface z = 0), result
in the following second-order coupled-mode system of ordinary differential equations
with respect to ϕn(x):

∞∑
n=−1

amn(x)
∂2ϕn

∂x2
(x) + bmn(x)

∂ϕn

∂x
+ cmn(x)ϕn(x) = iωµw(x), m = −1, 0, 1, . . . , (5.1a)
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while from the fourth term of (3.3) we obtain the fourth-order equation with respect
to w(x):

D

(
∂2

∂x2
− q2

)2

w + (1 − ε)w =
iµ

ω

∞∑
n=−1

ϕn(x), (5.1b)

both in a < x < b. The x-dependent coefficients of the CMS (5.1a, b) are

amn(x) = µ 〈Zn, Zm〉 , (5.2a)

bmn(x) = 2µ

〈
∂Zn

∂x
, Zm

〉
+ µ

dh

dx
Zn(z = −h; x)Zm(z = −h; x), (5.2b)

cmn(x) = µ

〈
∂2Zn

∂x2
+

∂2Zn

∂z2
− q2Zn, Zm

〉
− µ

∂Zn(z = 0; x)

∂z
Zm(z = 0; x)

+µ

(
∂Zn(z = −h; x)

∂z
+

dh

dx

∂Zn(z = −h; x)

∂x

)
Zm(z = −h; x), (5.2c)

where

〈f, g〉 =

∫ z=0

z=−h(x)

f (z)g(z) dz.

It is interesting to note that the coefficients bmn(x) and cmn(x), (5.2b, c), are defined
in terms of both z-integrals (coming from the first term on the left-hand side of (3.3)
and denoted by 〈· , ·〉) and surface values of the functions Zn and their derivatives at
z = 0 and/or z = −h(x).

Calculating the fifth and sixth terms on the left-hand side of (3.3), i.e. the
integrals on the vertical interface at x = a, we obtain relations between the coefficients
AR,

{
C(1)

n

}
n∈N

and the values ϕn(a) and ϕ′
n(a), n= 0, 1, 2 . . . , where a prime denotes

differentiation with respect to x. Similarly, calculating the seventh and eight terms
in (3.3), i.e. the integrals on the vertical interface at x = b, we obtain relations
between the coefficients AT ,

{
C(3)

n

}
n∈N

and the values ϕn(b) and ϕ′
n(b), n= 0, 1, 2 . . . .

Eliminating the coefficients AR,
{
C(1)

n

}
n∈N

, AT ,
{
C(3)

n

}
n∈N

from these relations, we
obtain the following boundary conditions, which are equivalent to the matching of
the wave field at the vertical interfaces:

∞∑
n=0

(
ϕ′

n(a)+ik(1)
0 ϕn(a)

)
B

(1)
n0 = 2ik(1)

0 exp
(
ik(1)

0 a
)∥∥Z

(1)
0

∥∥2
, (5.3a)

∞∑
n=0

(
ϕ′

n(a)−k(1)
m ϕn(a)

)
B (1)

nm = 0, m = 1, 2, . . . , (5.3b)

∞∑
n=0

(
ϕ′

n(b)−ik(3)
0 ϕn(b)

)
B

(3)
n0 = 0, (5.3c)

∞∑
n=0

(
ϕ′

n(b)+k(3)
m ϕn(b)

)
B (3)

nm = 0, m = 1, 2, . . . , (5.3d)

where ‖Z
(1)
0 ‖2 = 〈Z(1)

0 , Z
(1)
0 〉, and the coefficients B (j )

nm, n, m = −1, 0, 1, 2 . . . , j =1, 3, are
defined by

B (j )
nm =

{〈
Zn(z; x = a), Z(1)

m (z)
〉
, j = 1,〈

Zn(z; x = b), Z(3)
m (z)

〉
, j = 3.

(5.3e)
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The reflection and transmission coefficients (AR, AT ) appearing in (2.6a, b), as well as
the coefficients {C(1)

n }n∈N and {C(3)
n }n∈N controlling the dynamics in the two half-strips,

are then, obtained in terms of ϕn(a) and ϕn(b), n= 0, 1, 2, . . . , as follows:

AR =




∞∑
n=0

ϕn(a)B (1)
n0∥∥Z

(1)
0

∥∥2
− exp

(
ik(1)

0 a
)

 exp

(
ik(1)

0 a
)
,

C(1)
m =

∞∑
n=0

ϕn(a)B (1)
nm

∥∥Z
(1)
m

∥∥2
, m = 1, 2, 3 . . . , (5.4a)

and

AT =

∞∑
n=0

ϕn(b)B (3)
n0∥∥Z

(3)
0

∥∥2
exp

(
−i k(3)

0 b
)
, C(3)

m =

∞∑
n=0

ϕn(b)B (3)
nm

∥∥Z
(3)
m

∥∥2
, m = 1, 2, 3 . . . . (5.4b)

Equations (5.4a) and (5.4b) are obtained, respectively, from the sixth and eighth
terms of the variational equation (3.3).

In accordance with (4.7b), the sloping-bottom mode becomes identically zero in
the vicinity of the end points x → a + 0 and x → b − 0, since we have assumed that
h′(x) = 0 there. As a result, ϕ−1(x) does not appear in the boundary conditions (5.3a–
e). However, some boundary conditions are also needed for ϕ−1(x) at x = a and x = b.
It turns out that the appropriate ones are

ϕ−1(a) = ϕ′
−1(a) = 0, ϕ−1(b) = ϕ′

−1(b) = 0, (5.5)

which are fully compatible with (4.7b).
Furthermore, from the last two terms on the left-hand side variational equa-

tion (3.3), we obtain the following edge conditions at the plate ends:

∂3w

∂x3
− (2 − ν)q2 ∂w

∂x
= 0 at x = a and x = b, (5.6a)

∂2w

∂x2
− νq2w = 0 at x = a and x = b, (5.6b)

which ensure that the elastic plate is free of shear force (5.6a) and moment (5.6b),
respectively, at the ends x = a and x = b.

Remarks: (i) Under the appropriate smoothness assumptions for the depth function
h (x) (e.g. h (x) is two times continuously differentiable), all coefficients of the CMS are
continuous functions of x and can be calculated in advance, by means of the solution
of the local (vertical) eigenvalue problem (4.5b). (ii) The present model can be directly
extended to treat more general floating structures characterized by variable flexural
rigidity and mass parameters. (iii) Discontinuities of the physical parameters (depth
function and its derivatives, flexural rigidity and mass distributions) can also be treated
by introducing an appropriate domain decomposition and matching conditions at the
points of the discontinuities.
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5.2. The form of the CMS in constant depth

In areas where the depth is constant, h(x) = h, the CMS (5.1a, b) is greatly simplified.
First, all terms associated with ϕ−1 can be dropped, since ϕ−1 = 0, when h′(x) = 0
(cf. (4.7b)). In addition, the coefficients of the CMS become constant and they are
further simplified by dropping the terms containing x-derivatives in (5.2a–c). Then,
the present CMS takes the form

∞∑
n=0

〈Zn, Zm〉(ϕ′′
n(x) +

(
κ2

n − q2
)
ϕn(x)) − fnϕn(x) = iωw(x),

m = 0, 1, 2, 3 . . . , (5.7a)

and

D

(
∂2

∂x2
− q2

)2

w + (1 − ε)w =
iµ

ω

∞∑
n=0

ϕn(x), (5.7b)

where

fn = κn tanh(κnh). (5.8)

In (5.7a, b) and (5.8), {κn, Zn(z), n = 0, 1, 2, 3 . . .} are the eigenvalues and eigen-
functions given by (4.3a, b). The general solution of the present CMS (5.7a, b), is
given by

ϕn(x) = αn exp(iKnx) + βn exp(−iKnx), n = 0, 1, 2, 3 . . . , (5.9a)

and

w(x) =
i

ω

∞∑
n=0

fn ϕn(x), (5.9b)

where αn, βn are constants and Kn are the values of the x-direction wavenumber of
the hydroelastic problem,

Kn =
√

κ2
n − q2. (5.9c)

Indeed, direct substitution of (5.9a) in (5.7a) leads to (5.9b). Using the latter in
(5.7b) we see that this equation is also satisfied, since all modes satisfy the hydroelastic
dispersion relation, (4.3b).

It is now obvious that, in the case of constant depth, the solution of the present
CMS exactly satisfies (4.4), rendering our system fully compatible with the models
based on eigenfunction expansion techniques (e.g. Ertekin 1998; Takagi et al. 2000;
Hong et al. 2003).

5.3. Shallow-water asymptotic form of the CMS

Assuming, in addition to constant depth, shallow water conditions (µh → 0), and
ignoring the evanescent modes (ϕn(x) ≈ 0, n � 3), the dispersion relation (4.3b) implies
κnh → 0, n = 0, 1, 2. Then, using the asymptotics of tanh(κh) for small argument, the
dispersion relation takes the following asymptotic form:

µh ≈ Dκ6
nh

2 + (1 − ε)κ2
nh

2, κnh → 0, n = 0, 1, 2. (5.10)

In this case, the coefficients fn, n =0, 1, 2, (5.8), become

fn = κn tanh(κnh) ≈ κ2
nh, n = 0, 1, 2, (5.11a)

and the corresponding vertical eigenfunctions Zn(z), n = 0, 1, 2, defined by (4.3a),
simplify to

Zn(z) ≈ 1, and thus 〈Zn, Zm〉 ≈ h, n, m = 0, 1, 2. (5.11b)
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Thus, in the shallow-water constant-depth case, the solution of the CMS is

ϕ(x, z) =

n=2∑
n=0

ϕn(x)Zn(z) ≈
n=2∑
n=0

ϕn(x) =

n=2∑
n=0

αn exp(iKnx) + βn exp(−iKnx), (5.12)

where Kn =
√

κ2
n − q2, n = 0, 1, 2, and the constants κn, n = 0, 1, 2, are obtained as

the roots of the asymptotic dispersion relation (5.10).
The above results, in the case of normal incidence (q = 0), are in perfect agreement

with the “shallow-wave equation of a freely floating board” derived by Stoker (1967,
§ 10.13, equation 10.13.74), which, in the present notation, reads as follows:

Dh
d6ϕ(x)

dx6
+ (1 − ε)h

d2ϕ(x)

dx2
+ µϕ(x) = 0, a < x < b. (5.13)

The dispersion relation of (5.13) is exactly (5.10).

6. Numerical results and discussion
The discrete version of the CMS (5.1a, b) is obtained by truncating the local-mode

series (4.6) to a finite number of terms (modes), and using central second-order finite
differences to approximate the horizontal derivatives. Discrete boundary conditions
are obtained by using second-order forward and backward differences to approximate
the horizontal derivatives in (5.3a, d), (5.5) and (5.6a, b) at the ends x = a and x = b.
Thus, the discrete scheme obtained is uniformly of second order in the horizontal
direction. The coefficient matrix of the discrete system is block structured with 3-
and 5-diagonal blocks, corresponding to the discrete versions of (5.1a) and (5.1b),
respectively. The system matrix has a total dimension (Nm + 3)(N +1), where Nm

denotes the index where the series (4.6) is truncated and N is the number of segments
subdividing the interval a � x � b.

(i) Floating elastic plate in constant depth
For comparison purposes, we first examine the hydroelastic behaviour of a thin

elastic plate floating on a water layer of constant depth. The width of the plate
is L = b − a = 500 m and its flexural rigidity is D =105 m4 (per metre in the y-
direction). The water depth is h = 10 m, and the incoming waves are normally indident
(θ1 = 0◦). The effect of plate mass (which is of secondary importance) has been ignored
in the computations (ε = 0). The frequency of the incoming wave is taken to be
ω = 0.4rad s−1, which implies that the depth-to-wavelength ratio is h/λ=0.066 and
the water can be considered to be approximately shallow. In this case (flat seabed),
the sloping-bottom mode is zero (cf. (4.7b)), and our solution already converges on
using only the first three modes n= 0,1,2. Comparisons concerning the elastic-plate
deflection normalized with respect to the waveheight (|w|/H ), and the modulus of the
wave potential on the plate (|ϕ(x, z = 0)|), as obtained by the present CMS, using in
total 5 modes and N = 250 segments, are presented in figure 3, against the predictions
by Stoker’s shallow-wave model, (5.13). The two solutions exhibit the same behaviour
and are in good agreement. The small differences (2 %–3 %) are attributed to the fact
that the wave conditions are at the border between shallow and intermediate depth.

In the same case, the real and imaginary parts of the calculated wave field on
the vertical (x, z)-plane, as obtained by the present CMS, are plotted in figure 4 by
using equipotential lines. In order to better illustrate the results, each plot has been
split into a sequence of (vertically arranged) subplots corresponding to horizontal
segments of 150 m length. Also, in the same figure the free-surface elevation η in
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Figure 3. Comparison between the present CMS results (solid lines) and Stoker’s model
(dashed lines), concerning (a) the modulus of the deflection and (b) the modulus of the wave
potential on z = 0.

the neighbourhood of the elastic plate is shown by a thin line, and the elastic-plate
deflection w by a thick line, respectively. We can clearly observe in this figure the
good matching of the wave field on the vertical interfaces at x = 0 m and at x = 500 m,
as achieved by using only 5 modes in the local-mode series representation.

A second case has also been examined, which corresponds to deep water conditions.
This case, which refers to model scale, concerns an elastic plate of width L =1.4 m,
with flexural rigidity parameter D = 1.74 × 10−3 L4, in constant depth h = 0.5 m,
subject to the action of normally incident waves (θ1 = 0◦), with angular frequency
ω = 4π rad s−1, and normalized wavelength λ1/L = 0.278. The depth-to-wavelength
ratio is h/λ= 1.28. In figure 5 the modulus of the normalized plate deflection with
respect to the amplitude of the incoming wave (2|w|/H ) is presented, as obtained by
the present CMS (again with 5 modes and N = 250), and as obtained by Takagi et al.
(2000, figure 4). The latter has been found to be in perfect agreement with the results
of modal analysis by Yoshimoto et al. (1997), and with the results by Hermans (2003,
figure 4). That is, the present CMS predictions agree very well with various existing
well-established models, which, however, are limited to constant-depth environments.

(ii) Elastic plate over a smooth underwater shoal
In order to illustrate the effects of variable bathymetry (sloping bottom) on the

hydroelastic behaviour of the system, we examine the same elastic plate as in the first
constant-depth (L = 500 m, D = 105 m4, ε = 0) lying over a smooth underwater shoal,
characterized by the following depth function:

h(x) =
h1 + h3

2
− h1 − h3

2
tanh

(
3π

(
x − a

b − a
− 1

2

))
, a = 0 < x < b = 500 m. (6.1)
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Figure 4. (a) Real and (b) imaginary parts of the calculated wave field, as obtained by the
present method, in the case of constant depth. The elastic plate extends from x = 0 m to
x = 500m. The free-surface elevation is shown by a thin line and the elastic plate deflection by
a thick line, respectively. The calculated values of the reflection and transmission coefficients
as obtained by the present CMS are: |AR | = 0.089, |AT | = 0.996.

For comparison with the corresponding constant-depth case, the average depth of
this bottom profile, hm = 0.5(h1 + h3), has been kept equal to 10 m, and the angular
frequency of the incident wave is the same as before, ω =0.4 rad s−1.

Numerical results obtained by the present method are presented below, for two
bottom profiles generated by (6.1). The first one is characterized by h1 = 12 m, h3 = 8 m
and has maximum bottom slope smax = 3.8 %, while the second profile, characterized
by h1 = 15 m, h3 = 5 m, is much steeper, smax = 9.4 %.

The real and imaginary parts of the calculated wave field, as obtained by the present
CMS using in total again 5 modes and 250 segments (which has been proved enough
for numerical convergence), are shown in figures 6 and 7, for the two profiles. The
extension of the equipotential lines below the bottom surface (as calculated by means
of (4.6)) has been maintained in the above figures in order to better visualise the
fulfilment of the bottom boundary condition. Also, in these figures, the free-surface
elevation in the neighbourhood of the elastic plate and the plate deflection are shown,
using thin and thick lines, respectively. In all cases we observe that the matching
of the wave field on the vertical interfaces, at the ends of the plate (x = 0 m and at
x = 500 m), indicated by vertical dashed lines, is excellent. Moreover, we observe that
the equipotential lines intersect the bottom surface perpendicularly, as they ought,
because of the Neumann boundary condition, both on the horizontal and on the
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Figure 5. Comparison between present method (solid lines) and Takagi et al.’s (2000) results
(crosses), for the modulus of the elastic-plate deflection normalized with respect to the normally
incident wave amplitude.
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Figure 6. Same as figure 4, but for the case of an elastic plate over the shoal characterized
by the depth profile (6.1) with h1 = 12 m and h3 = 8m (maximum bottom slope 3.8%).
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Figure 7. Same as figure 4, but for the case of an elastic plate over the shoal characterized
by the depth profile (6.1) with h1 = 15m and h3 = 5m (maximum bottom slope 9.4%).
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Figure 8. (a, b) Close-up of the wave field in the local area shown by dashed lines in
figures 7(a) and (b), respectively, where the local bottom slope is maximum.

sloping parts of the bottom. This fact is better illustrated in the case of the steeper
bottom profile with the aid of the close-ups of the local area shown in figure 8.

In figure 9 the moduli of the modal-amplitude functions, i.e. the quantities |ϕn(x)| in
a � x � b, are plotted, as obtained by the present method. The horizontal axis in fig-
ure 9 is a multiple repetition of the interval [a, b], i.e. a sequence of repeated intervals
[a, b], each associated with a mode and named after the mode number. In the nth
replica of [a, b] the amplitudes |ϕn(x)| of the nth mode, are plotted, using solid, lines,
respectively. Also, in the same figure, the curve 0.1(n − 2)−4 is drawn, bounding the
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Figure 9. Moduli of the modal-amplitude functions |ϕn(x)| vs. x ∈ [a, b] in the variable
bathymetry region, for various modes n= − 1, 0, 1, 2 . . . . Environment and wave conditions
as in figure 7. The curve 0.1(n − 2)−4, shown by using a thick solid line, bounds the maxima
of the modal amplitudes of all potentials.

maxima of the amplitudes of all modal functions. On the basis of these (and many
other similar) results, we can conjecture that the decay of the modal amplitudes is of
O(n−4), which is sufficient to ensure the uniform convergence (up to and including
the boundaries) of the corresponding local-mode series and their derivatives.

In figure 10, the effect of the bottom slope on the modulus of the elastic-plate
deflection (|w|/H ) is presented. We observe in this figure that, in the mean, the elastic
deflection increases significantly at the front part (x/L < 0.5) of the plate as the shoal
becomes steeper. This result is justified by the higher hydroelastic excitation by waves
in the front (upwave) elastic-plate part, which is induced by the extra reflected energy
from the shoal. On the other hand, the absolute maximum of the plate deflection in
the vicinity of the front edge (x = 0) tends to slightly decrease.

In figure 11, the effect of the incident wave angle on the modulus of the elastic plate
deflection is presented. In this case, results are shown for the 9.4 % sloping bottom
profile. The flexural of rigidity and the rest parameters of the plate have been kept the
same (D =105 m4, ε = 0), and Poisson’s ratio is taken to be ν = 0.25. The numerical
results are again based on the present CMS using 5 modes and 250 segments to
discretize the interval a � x � b. We can observe in figure 11 that, as the incident wave
angle increases, the elastic plate deflection at the front (upwave) part (x/L < 0.5) of
the plate also increases, while at the back (downwave) part it becomes smaller. As
the incident wave angle increases, the horizontal (along the x-axis) wavelength of the
wave and of the plate deflection increase, as they ought. Also, refraction phenomena
(which are absent in the normal incidence case) come into play and become more and
more significant. The values of the calculated reflection and transmission coefficients
for all the above cases are compared in table 1, and are found to satisfy the energy
conservation relation, (2.4).
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Figure 10. Effect of the bottom profile on the modulus of the elastic-plate deflection. The
three bottom profiles examined are: (i) horizontal bottom (thin solid line), (ii) 3.8% sloping
bottom (dashed line), (iii) 9.4% sloping bottom (thick solid line).
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Figure 11. Effect of the incident wave angle on the modulus of the elastic-plate deflection
for an elastic plate over a shoal (maximum bottom slope 9.4%). The three incidence angles
examined are: (i) normal incidence, θ1 = 0◦ (thin solid line), (ii) oblique incidence, θ1 = 30◦

(dashed line), and (iii) very oblique incidence, θ1 = 60◦ (thick solid line).

(iii) Elastic plate over smooth undulating bottom
Finally, in order to present the effects of bottom corrugations on the hydroelastic

behaviour of the system, we examine the same configuration (elastic plate L = 500 m,
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Bottom type: Flat bottom Sloping 3.8% Sloping 9.4% Sloping 9.4% Sloping 9.4%
Wave incidence: θ1 = 0◦ θ1 = 0◦ θ1 = 0◦ θ1 = 30◦ θ1 = 60◦

|AR | 0.089 0.100 0.145 0.094 0.045
|AT | 0.996 1.082 1.249 1.197 0.963

Table 1. Calculated values of the wave reflection |AR | and transmission |AT | coefficients in
the case of a floating elastic plate over a shoal, for the various profiles and incidence angles.
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Figure 12. Effect of bottom corrugations on the modulus of the elastic-plate deflection. The
three bottom profiles examined are: (i) horizontal bottom (thin solid line), (ii) undulating
bottom with Ab/h =15% (dashed line), (iii) undulating bottom with Ab/h = 30% (thick solid
line).

D = 105 m4, ε =0) but lying over a smooth undulating bottom. In this case, the bottom
profile is taken to be defined by the following depth function:

h(x) = h − g(x)Ab sin(kb(x − a)), a = 0 < x < b = 500 m, (6.2a)

where kb = 2π/λb is the bottom wavenumber, λb is the corresponding wavelength, and
Ab is the amplitude of bottom undulations. The function g(x) used in (6.2a) is a filter
function defined by

g(x) =

(
1 − exp

(
−

(
x − a

λb

)2))(
1 − exp

(
−

(
x − b

λb

)2))
. (6.2b)

The above function has essential support in a <x <b, and its value along with its
derivative become zero at both ends x = a and x = b of the plate. For comparison
with the previous (constant-depth and shoal) cases, the average depth of the bottom
profile has been kept the same (h = 10 m), as has the frequency of the normally
(θ1 = 0◦) incident wave, ω = 0.4 rad s−1.

Numerical results are presented in figure 12, for two bottom profiles generated by
(6.2a, b) using L/λb =4, in comparison with the deflection of the same elastic plate
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in the case of the horizontal bottom. The first undulating bottom is characterized by
Ab/h= 15 % and has maximum bottom slope smax = 7.5 % and curvature 0.0036 m−1,
while the second profile, characterized by Ab/h= 30 %, is much steeper, having
maximum bottom slope smax = 15 % and curvature 0.0072 m−1. In this particular case,
the calculated reflection and transmission coefficients, as well as the average values of
the elastic-plate deflection, do not significantly change, compared to the flat bottom
case. On the other hand, we observe in figure 12 that, as the the amplitude of bottom
undulations increases, the shape of the elastic-plate deflection (modulus) becomes
more complex in the middle part of the plate, which lies exactly above the region
where the bottom undulations are stronger.

7. Conclusions
A new coupled-mode model has been derived and applied to the hydroelastic

analysis of large floating bodies of shallow draught, lying over variable bathymetry
regions. Under the assumption of small-amplitude incident waves and small body
deflections, the linearised water-wave equations and thin-elastic-plate theory have
been used. The present approach is based on appropriate extension of the consistent
coupled-mode model developed by Athanassoulis & Belibassakis (1999), for waves
propagating in variable bathymetry regions. In its present form our method can also
find useful applications to problems concerning water-wave interaction with ice sheets
of small and uniform thickness, lying over variable bathymetry

The present method does not introduce any simplifying assumptions or other
restrictions concerning either the bottom slope and curvature, or the vertical structure
of the wave field. All wave phenomena are linearly fully modelled and, thus, the present
method can serve as a useful tool for the analysis of the hydroelastic behaviour of
the system in the whole range of parameters, within the regime of linear theory. An
important feature of the numerical solution of the problem by means of the enhanced
local-mode series representation is that it exhibits rapid convergence, corresponding
to the fast decay of the modal amplitudes |ϕn| =O(n−4). Thus, a small number of
modes (of the order of 5 to 6) retained in the local-mode series suffices to obtain
accurate results.

The present method can be easily extended to the fully three-dimensional
hydroelastic problem over a general seafloor, including bodies or structures character-
ized by variable thickness (draught), flexural rigidity and mass distributions. Finally,
the analytical structure of the present model facilitates its extension to the modelling
and analysis of weakly nonlinear (second and higher order) wave–elastic floating
structure–seabed interactions in variable bathymetry regions.

The authors are indebted to the anonymous referees for their constructive comments
and suggestions which helped them in improving the presentation of the coupled-mode
system and motivated the additional results given in the Appendix.

Appendix. Relation between the present functional F and the standard energy
functional of thin-plate theory

We shall now show that, under the assumptions made in our analysis, i.e. time-
harmonic dependence and y-periodicity, the variational principle obtained by means
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of the following part of our functional F (defined by (3.1)):
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is equivalent to the variational principle based on the standard energy functional of
thin-plate theory, defined as the difference between the strain energy and the kinetic
energy of the elastic plate (in vacuo):
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The real-valued field w̃ = w̃(x, y; t), appearing in (A 2), is the plate deflection in the
time domain, while the field w = w(x; ω) = wR(x; ω) + iwI (x; ω), appearing in (A 1)
and in the main part of the present paper, is a complex-valued deflection field, related
to the former by the relation

w̃ = w̃(x, y; t) = Re{w(x; ω) exp(i(qy − ω t))}, (A 3)

cf. (2.1c). In order to establish the equivalence between the variational principle
obtained by (A 1) and the usual variational principle obtained by (A 2) (for the time-
harmonic, oblique-incidence problem), use will be made of the following identities:
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In deriving (A 4), we have made use of the definition (A 3) and the equation

2 Re(z1) Re(z2) = Re(z1z2) + Re(z1z̄2), (A 5)

which is valid for any two complex numbers z1, z2. Here and in what follows an
overbar denotes the complex conjugate.

Consider now (A 4a), and apply time integration to both sides of it:
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is independent of t and y (remember that w =w(x; ω)), thus the t- and y-integration
applies only to exp(2i(qy − ωt)). Performing the t-integration over one time period
and the y-integration over one periodic cell (of length 2π/q = 2π/κ
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Similarly, we find that the first terms on the right-hand side of (A 4b, c, d) are zero,
and thus, we obtain
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Using again formula (A 5) in the above equation, we obtain

F2 = − π2

ωq
Re

∫ x=b

x=a

dx

(
D

{(
∂2w

∂x2
− q2w

)2

+ 2(1 − ν)q2

((
∂2w

∂x2
w

)
+ q2(

∂w

∂x

)2)}

− mω2w2

)
+

2π2

ωq

∫ x=b

x=a

dx

(
D

{(
∂2wR

∂x2
− q2wR)2 + 2(1 − ν)q2

((
∂2wR

∂x2
wR

)

+ q2

(
∂wR

∂x

)2)}
− mω2w2

R

)
. (A 7)

Expanding the term in the curly brackets on the right-hand side of (A 7), and
applying integration by parts to the terms
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we finally obtain
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By comparing (A 1) and (A 8) it can be seen that the solution w∗ of the variational
equation δF1 (w∗) = 0 , for any complex variation δw = δwR + iδwI , also satisfies
δF2 = δF21 + δF22 = 0 . For, by first restricting δw to be δw = δwR + i0 and using it
in δF1 (w∗) = 0 , we obtain δF22 (w∗) = 0 . Consequently, for any admissible complex
variation δw, we obtain

δF2(w∗) = δF21(w∗) = cRe(δF1(w∗)), (A 9)

where c is a constant. Therefore, the stationarity of (the part F1 of) our functional also
guarantees the stationarity of the strain–kinetic energy functional (F2 ) of thin-plate
theory.
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